Heron Racing Handbook 44
Sailing employs the —acting on, or —to propel a craft on the surface of the water (,,, or ), on ice () or on land () over a chosen, which is often part of a larger plan of. A course defined with respect to the true wind direction is called a. Conventional sailing craft cannot derive power from sails on a point of sail that is too close into the wind.
On a given point of sail, the adjusts the alignment of each sail with respect to the direction (as perceived on the craft) to mobilize. The forces transmitted via the sails are resisted by forces from the,, and of a sailing craft, by forces from skate runners of an iceboat, or by forces from wheels of a land sailing craft to allow steering the course. In the, most sailing represents a form of. Or can be divided into and. Cruising can include extended offshore and ocean-crossing trips, coastal sailing within sight of land, and daysailing. Until the mid of the 19th century, sailing ships were the primary means for marine commerce, this period is known as. For more details on this topic, see.
Throughout history sailing has been instrumental in the development of civilization, affording humanity greater mobility than travel over land, whether for trade, transport or warfare, and the capacity for fishing. The earliest representation of a ship under sail appears on a painted disc found in dating between 5000 and 5500 BCE.
Oceanfarers traveled vast distances of open ocean in using navigation methods such as. Advances in sailing technology from the onward enabled,, and explorers to make longer voyages into regions with extreme weather and climatic conditions. There were improvements in sails, and; improvements in marine navigation including the and, of both the sea and constellations, allowed more certainty in sea travel.
Great blue herons consumed trout averaging. 21.6 cm in total length, which is consistent with pub- lished visual estimates. However, great blue herons con- sumed trout ranging from 12 cm to 38 cm, suggesting that most commercially produced trout would be vul- nerable to heron predation. By comparing trout inven. Welcome to HERON TIPS. Finally we have some tips for you to improve your sailing and boats. 'Flat is fast: ' This section will be broken up into two parts skills and construction tips. To start off you will notice that most of the tips are just links to other sites. What I have done is.
From the 15th century onwards, European ships went further north, stayed longer on the and in the, and eventually began to explore the and the. Sailing has contributed to many great explorations in the world. According to Jett, the Egyptians used a bi-pod mast to support a sail that allowed a reed craft to travel upriver with a following wind, as late as 3,500 BCE. Such sails evolved into the square-sail rig that persisted up to the 19th century. Such rigs generally could not sail much closer than 80° to the wind. Fore-and-aft rigs appear to have evolved in Southeast Asia—dates are uncertain—allowing for rigs that could sail as close as 60–75° off the wind.
Main article: The physics of sailing arises from a balance of forces between the wind powering the sailing craft as it passes over its sails and the resistance by the sailing craft against being blown off course, which is provided in the water by the,, and other elements of the underbody of a sailboat, on ice by the runners of an, or on land by the wheels of a. Forces on sails depend on wind speed and direction and the speed and direction of the craft. The speed of the craft at a given point of sail contributes to the '—the wind speed and direction as measured on the moving craft. The apparent wind on the sail creates a total aerodynamic force, which may be resolved into —the force component in the direction of the apparent wind—and —the force component (90°) to the apparent wind. Depending on the alignment of the sail with the apparent wind ( ), lift or drag may be the predominant propulsive component. Depending on the angle of attack of a set of sails with respect to the apparent wind, each sail is providing motive force to the sailing craft either from lift-dominant attached flow or drag-dominant separated flow. Additionally, sails may interact with one another to create forces that are different from the sum of the individual contributions each sail, when used alone.
Apparent wind velocity [ ] The term ' refers both to speed and direction. As applied to wind, apparent wind velocity ( V A) is the air velocity acting upon the leading edge of the most forward sail or as experienced by instrumentation or crew on a moving sailing craft. In, wind speeds are normally expressed in and wind angles in.
All sailing craft reach a constant forward velocity ( V B) for a given true wind velocity ( V T) and point of sail. The craft's point of sail affects its velocity for a given true wind velocity.
Conventional sailing craft cannot derive power from the wind in a 'no-go' zone that is approximately 40° to 50° away from the true wind, depending on the craft. Likewise, the directly downwind speed of all conventional sailing craft is limited to the true wind speed.
As a sailboat sails further from the wind, the apparent wind becomes smaller and the lateral component becomes less; boat speed is highest on the beam reach. In order to act like an airfoil, the sail on a sailboat is sheeted further out as the course is further off the wind.
As an iceboat sails further from the wind, the apparent wind increases slightly and the boat speed is highest on the broad reach. In order to act like an airfoil, the sail on an iceboat is sheeted in for all three points of sail. Lift and drag on sails [ ]. Main articles: and Lift on a sail, acting as an, occurs in a direction perpendicular to the incident airstream (the apparent wind velocity for the head sail) and is a result of pressure differences between the windward and leeward surfaces and depends on angle of attack, sail shape, air density, and speed of the apparent wind. The lift force results from the average pressure on the windward surface of the sail being higher than the average pressure on the leeward side. These pressure differences arise in conjunction with the curved air flow. As air follows a curved path along the windward side of a sail, there is a pressure perpendicular to the flow direction with higher pressure on the outside of the curve and lower pressure on the inside.
To generate lift, a sail must present an ' between the of the sail and the apparent wind velocity. Angle of attack is a function of both the craft's point of sail and how the sail is adjusted with respect to the apparent wind. As the lift generated by a sail increases, so does, which together with constitute total drag, which acts in a direction parallel to the incident airstream. This occurs as the angle of attack increases with sail trim or change of course and causes the to increase up to the point of along with the lift-induced. At the onset of stall, lift is abruptly decreased, as is lift-induced drag. Sails with the apparent wind behind them (especially going downwind) operate in a stalled condition. Lift and drag are components of the total aerodynamic force on sail, which are resisted by forces in the water (for a boat) or on the traveled surface (for an ice boat or land sailing craft).
Sails act in two basic modes; under the lift-predominant mode, the sail behaves in a manner analogous to a wing with airflow attached to both surfaces; under the drag-predominant mode, the sail acts in a manner analogous to a parachute with airflow in detached flow, eddying around the sail. Lift predominance (wing mode) [ ].
Sail angles of attack (α) and resulting (idealized) flow patterns for attached flow, maximum lift, and stalled for a hypothetical sail. The stagnation streamlines (red) delineate air passing to the leeward side (top) from that passing to the windward (bottom) side of the sail. Sails allow progress of a sailing craft to windward, thanks to their ability to generate lift (and the craft's ability to resist the lateral forces that result). Each sail configuration has a characteristic coefficient of lift and attendant coefficient of drag, which can be determined experimentally and calculated theoretically. Sailing craft orient their sails with a favorable angle of attack between the entry point of the sail and the apparent wind even as their course changes. The ability to generate lift is limited by sailing too close to the wind when no effective angle of attack is available to generate lift (causing luffing) and sailing sufficiently off the wind that the sail cannot be oriented at a favorable angle of attack to prevent the sail from with. Drag predominance (parachute mode) [ ] When sailing craft are on a course where the angle between the sail and the apparent wind (the angle of attack) exceeds the point of maximum lift, separation of flow occurs.
Drag increases and lift decreases with increasing angle of attack as the separation becomes progressively pronounced until the sail is perpendicular to the apparent wind, when lift becomes negligible and drag predominates. In addition to the sails used upwind, provide area and curvature appropriate for sailing with separated flow on downwind points of sail, analogous to parachutes, which provide both lift and drag. Downwind sailing with a spinnaker •. Further information: Wind speed increases with height above the surface; at the same time, wind speed may vary over short periods of time as gusts. Affects sailing craft in motion by presenting a different wind speed and direction at different heights along the. Wind shear occurs because of friction above a water surface slowing the flow of air.
The ratio of wind at the surface to wind at a height above the surface varies by a power law with an exponent of 0.11-0.13 over the ocean. This means that a 5-m/s (≈10-knot) wind at 3 m above the water would be approximately 6 m/s (≈12 knots) at 15 m above the water. In hurricane-force winds with 40-m/s (≈78 knots) at the surface the speed at 15 m would be 49 m/s (≈95 knots). This suggests that sails that reach higher above the surface can be subject to stronger wind forces that move the centre of effort on them higher above the surface and increase the heeling moment. Additionally, apparent wind direction moves aft with height above water, which may necessitate a corresponding to achieve attached flow with height. Gusts may be predicted by the same value that serves as an exponent for wind shear, serving as a gust factor. So, one can expect gusts to be about 1.5 times stronger than the prevailing wind speed (a 10-knot wind might gust up to 15 knots).
This, combined with changes in wind direction suggest the degree to which a sailing craft must adjust sail angle to wind gusts on a given course. Point of sail [ ].
Further information: A sailing craft's ability to derive power from the wind depends on the it is on—the direction of travel under sail in relation to the true wind direction over the surface. The principal points of sail roughly correspond to 45° segments of a circle, starting with 0° directly into the wind. For many sailing craft 45° on either side of the wind is a 'no-go' zone, where a sail is unable to mobilize power from the wind. Sailing on a course as close to the wind as possible—approximately 45°—is termed 'close-hauled'. At 90° off the wind, a craft is on a 'beam reach'. At 135° off the wind, a craft is on a 'broad reach'.
At 180° off the wind (sailing in the same direction as the wind), a craft is 'running downwind'. In points of sail that range from close-hauled to a broad reach, sails act substantially like a wing, with lift predominantly propelling the craft. In points of sail from a broad reach to down wind, sails act substantially like a parachute, with drag predominantly propelling the craft. For craft with little forward resistance and, this transition occurs further off the wind than for and. Wind direction for points of sail always refers to the true wind—the wind felt by a stationary observer.
The —the wind felt by an observer on a moving sailing craft—determines the for sailing craft. A sailboat on three points of sail The waves give an indication of the true wind direction. The flag gives an indication of apparent wind direction. Main article: True wind velocity ( V T) with the sailing craft's velocity ( V B) to be the apparent wind velocity ( V A), the air velocity experienced by instrumentation or crew on a moving sailing craft.
Apparent wind velocity provides the motive power for the sails on any given point of sail. It varies from being the true wind velocity of a stopped craft in irons in the no-go zone to being faster than the true wind speed as the sailing craft's velocity adds to the true windspeed on a reach, to diminishing towards zero, as a sailing craft sails dead downwind. Effect of apparent wind on sailing craft at three points of sail Sailing craft A is close-hauled. Sailing craft B is on a beam reach. Sailing craft C is on a broad reach. Boat velocity (in black) generates an equal and opposite apparent wind component (not shown), which adds to the true wind to become apparent wind. Apparent wind on an iceboat.
As the iceboat sails further from the wind, the apparent wind increases slightly and the boat speed is highest on the broad reach. The sail is sheeted in for all three points of sail. The speed of sailboats through the water is limited by the resistance that results from hull drag in the water. Ice boats typically have the least resistance to forward motion of any sailing craft. Consequently, a sailboat experiences a wider range of apparent wind angles than does an ice boat, whose speed is typically great enough to have the apparent wind coming from a few degrees to one side of its course, necessitating sailing with the sail sheeted in for most points of sail. On conventional sail boats, the sails are set to create lift for those points of sail where it's possible to align the leading edge of the sail with the apparent wind. For a sailboat, point of sail affects lateral force significantly.
The higher the boat points to the wind under sail, the stronger the lateral force, which requires resistance from a keel or other underwater foils, including daggerboard, centerboard, skeg and rudder. Lateral force also induces heeling in a sailboat, which requires resistance by weight of ballast from the crew or the boat itself and by the shape of the boat, especially with a catamaran. As the boat points off the wind, lateral force and the forces required to resist it become less important. On ice boats, lateral forces are countered by the lateral resistance of the blades on ice and their distance apart, which generally prevents heeling.
Course under sail [ ]. Wind circulation around an in the Northern Hemisphere Wind and currents are important factors to plan on for both offshore and inshore sailing. Predicting the availability, strength and direction of the wind is key to using its power along the desired course. Ocean currents, tides and river currents may deflect a sailing vessel from its desired course.
If the desired course is within the no-go zone, then the sailing craft must follow a zig-zag route into the wind to reach its waypoint or destination. Downwind, certain high-performance sailing craft can reach the destination more quickly by following a zig-zag route on a series of broad reaches.
Negotiating obstructions or a channel may also require a change direction of with respect to the wind, necessitating changing of tack with the wind on the opposite side of the craft, from before. Changing tack is called tacking when the wind crosses over the bow of the craft as it turns and jibing (or gybing) if the wind passes over the stern. Wind and currents [ ]. The Winds and oceanic currents are both the result of the sun powering their respective fluid media.
Wind powers the sailing craft and the ocean bears the craft on its course, as currents may alter the course of a sailing vessel on the ocean or a river. • Wind – On a global scale, vessels making long voyages must take into account, which causes zones of,, and high-pressure zones with light winds, sometimes called, in between. Sailors predict wind direction and strength with knowledge of and, and the that accompany them.
Along coastal areas, sailors contend with in wind direction—flowing off the shore at night and onto the shore during the day. Local temporary wind shifts are called lifts, when they improve the sailing craft's ability travel along its in the direction of the next waypoint. Unfavorable wind shifts are called headers. • Currents – On a global scale, vessels making long voyages must take major circulation into account. Major oceanic currents, like the in the and the in the require planning for the effect that they will have on a transiting vessel's track. Likewise, tides affect a vessel's track, especially in areas with large tidal ranges, like the or along, or where the tide flows through, like in. Mariners use to inform their navigation.
Before the advent of motors, it was advantageous for sailing vessels to enter or leave port or to pass through a strait with the tide. Upwind [ ] A sailing craft can sail on a course anywhere outside of its no-go zone. If the next waypoint or destination is within the arc defined by the no-go zone from the craft's current position, then it must perform a series of to get there on a dog-legged route, called beating to windward. The progress along that route is called the course made good; the speed between the starting and ending points of the route is called the speed made good and is calculated by the distance between the two points, divided by the travel time. The limiting line to the waypoint that allows the sailing vessel to leave it to leeward is called the layline. Whereas some sailing yachts can sail as close as 30° to the wind, most 20th-Century square riggers are limited to 60° off the wind.
Are designed to operate with the wind on either side, whereas and are designed to have the wind come from one side only. Because the lateral wind forces are highest on a sailing vessel, close-hauled and beating to windward, the resisting water forces around the vessel's keel, centerboard, rudder and other foils is also highest to mitigate —the vessel sliding to leeward of its course. Diario Di Una Schizofrenica Libro Pdf Immortals there. Ice boats and land yachts minimize lateral motion with sidewise resistance from their blades or wheels.
Tacking and beating to windward •. Two sailing yachts on opposite tacks Tacking or coming about is a maneuver by which a sailing craft turns its into and through the wind (called the 'eye of the wind') so that the apparent wind changes from one side to the other, allowing progress on the opposite tack. The type of sailing rig dictates the procedures and constraints on achieving a tacking maneuver. Fore-and-aft rigs allow their sails to hang limp as they tack; square rigs must present the full frontal area of the sail to the wind, when changing from side to side; and have flexibly pivoting and fully rotating masts that get flipped from side to side. • Fore-and-aft rig – A fore-and-aft rig permits the wind to flow past the sail, as the craft head through the eye of the wind.
Modern rigs pivot around a stay or the mast, while this occurs. For a, the old leeward sheet is released as the craft heads through the wind and the old windward sheet is tightened as the new leeward sheet to allow the sail to draw wind. Are often self-tending and slide on a traveler to the opposite side. On certain rigs, such as and, the sail may be partially lowered to bring it to the opposite side. • Square rig – Unlike with a fore-and-aft rig, a square-rigged vessel's sails must be presented squarely to the wind and thus impede forward motion as they are swung around via the yardarms through the wind as controlled by the vessel's, using —adjusting the fore and aft angle of each around the mast—and attached to the (bottom corners) of each sail to control the sail's angle to the wind. The procedure is to turn the vessel into the wind with the hind-most fore-and-aft sail (the ), pulled to windward to help turn the ship through the eye of the wind.
Once the ship has come about, all the sails are adjusted to align properly with the new tack. Because square-rigger masts are more strongly braced from behind than from ahead, tacking is a dangerous procedure in strong winds. The ship may lose forward momentum (become caught in stays) and the rigging may fail from the wind coming from ahead. Under these conditions, the choice may be to wear ship—to turn the away from the wind and around 240° onto the next tack (60° off the wind).
• Windsurfer rig – Sailors of tack by walking forward of the mast and letting the sail swing into the wind as the board moves through the eye of the wind; once on the opposite tack, the sailor realigns the sail on the new tack. In strong winds on a small board, an option is the fast tack, whereby the board is turned into the wind at planing speed as the sailor crosses in front of the flexibly mounted mast and reaches for the boom on the opposite side and continues planing on the new tack. • Kitesurfer rig – When changing tack, a rotates the end-for-end to align with the new apparent wind direction. Kite boards are designed to be used exclusively while planing; many are double-ended to allow an immediate change of course in the opposite direction. Downwind [ ]. Flying a sprit-mounted asymmetrical spinnaker on a broad reach A sailing craft can travel directly downwind only at a speed that is less than the wind speed. However, a can achieve a higher downwind speed made good by traveling on a series of broad reaches, punctuated by jibes in between.
This is true of ice boats and sand yachts. On the water it was explored by sailing vessels, starting in 1975, and now extends to high-performance skiffs, catamarans and foiling sailboats. Navigating a channel or a downwind course among obstructions may necessitate changes in direction that require a change of tack, accomplished with a jibe. Changing tack by jibing [ ]. Windsurfer jibing Jibing or gybing is a sailing maneuver by which a sailing craft turns its past the eye of the wind so that the apparent wind changes from one side to the other, allowing progress on the opposite tack. As with tacking, the type of sailing rig dictates the procedures and constraints for jibing.
Fore-and-aft sails with booms, gaffs or sprits are unstable when they point into the eye of the wind and must be controlled to avoid a violent change to the other side; square rigs as they present the full area of the sail to the wind from the rear experience little change of operation from one tack to the other; and again have flexibly pivoting and fully rotating masts that get flipped from side to side. • Fore-and-aft rig – A fore-and-aft sail is set for the wind on one side for a given tack. As the wind changes across the stern and reaches the other side of the sail, the sail may be blown to the other side suddenly—unless it is shielded by other sails to windward. If the sail is supported with a boom, gaff or sprit the change may be violent—unless the sheets are tight—as the sail is blown to the other side.
For a, the old leeward sheet is loosened as the stern turns through the wind and the old windward sheet is tightened as the new leeward sheet to allow the sail to draw wind. A jib is usually shielded by the mainsail in this process. The mainsail sheet is tightened to limit the sudden movement from one side to the other and then eased out, once the boat is safely on the opposite tack. On smaller craft, the boom may be controlled by hand. • Spinnaker – Some sailboats use a symmetrical —a three-sided, parachute-like sail—off the wind. The windward side of a spinnaker is attached to a horizontal pole at the lower corner of the sail and the other end to the mast.
The pole is controlled by a line, called a guy, and the other lower corner is controlled by a sheet. When jibing, the pole is disconnected from the mast and attached to the opposite lower corner. Upon establishment on the new tack, the end of the pole that was on the sail is connected to the mast and the former guy becomes the new sheet and vice versa for the former sheet. For high-performance craft with an asymmetrical spinnaker attached to a bow sprit, the sail is jibed in a manner similar to a jib. • Square rig – As with any downwind change of course, the sails on a square rigger are adjusted with the vessel's running rigging, using braces sheets. Only the jibs, staysails and the spanker need to be jibed, as on a fore-and-aft rig. • Windsurfer rig – When sailors of jibe, they use one of two techniques, the carve jibe and the duck jibe.
The carve jibe allows the sail to pivot away from the wind as the board is turned with the wind passing over the stern. A duck jibe is initiated on a beam reach and the sailor presses the sail towards the wind and passes the back end of the boom over to the other side, 'ducking' under it. • Kitesurfer rig – When changing tack while on a broad reach, a kitesurfer again rotates the to align with the new apparent wind as the board changes course with the stern through the eye of the wind while planing. Sail trimming [ ]. A dinghy on a reach The most basic control of the sail consists of setting its angle relative to the wind. The control line that accomplishes this is called a 'sheet.' If the sheet is too loose the sail will flap in the wind, an occurrence that is called 'luffing.'
Optimum sail angle can be approximated by pulling the sheet in just so far as to make the luffing stop, or by using of – small ribbons or attached each side of the sail that both stream horizontally to indicate a properly trimmed sail. Finer controls adjust the overall shape of the sail.
Two or more sails are frequently combined to maximize the smooth flow of air. The sails are adjusted to create a smooth over the sail surfaces. This is called the 'slot effect'. The combined sails fit into an imaginary aerofoil outline, so that the most forward sails are more in line with the wind, whereas the more aft sails are more in line with the course followed. The combined efficiency of this sail plan is greater than the sum of each sail used in isolation. More detailed aspects include specific control of the sail's shape, e.g.: • reefing, or reducing the sail area in stronger wind • altering sail shape to make it flatter in high winds • raking the mast when going upwind (to tilt the sail towards the rear, this being more stable) • providing sail twist to account for wind speed differential and to spill excess wind in gusty conditions • gibbing or lowering a sail Reducing sail (reefing) [ ] An important safety aspect of sailing is to adjust the amount of sail to suit the wind conditions.
As the wind speed increases the crew should progressively reduce the amount of sail. On a small boat with only jib and this is done by the jib and by partially lowering the mainsail, a process called 'reefing the main'. Means reducing the area of a sail without actually changing it for a smaller sail. Ideally, reefing does not only result in a reduced sail area but also in a lower centre of effort from the sails, reducing the heeling moment and keeping the boat more upright. There are three common methods of reefing the mainsail: • Slab reefing, which involves lowering the sail by about one-quarter to one-third of its full length and tightening the lower part of the sail using an or a pre-loaded reef line through a at the new, and hook through a cringle at the new.
• In-mast (or on-mast) roller-reefing. This method rolls the sail up around a vertical foil either inside a slot in the mast, or affixed to the outside of the mast. It requires a mainsail with either no, or newly developed vertical battens. • In-boom roller-reefing, with a horizontal foil inside the.
This method allows for standard- or full-length horizontal battens. Mainsail furling systems have become increasingly popular on cruising yachts, as they can be operated shorthanded and from the cockpit, in most cases. However, the sail can become jammed in the or boom slot if not operated correctly. Mainsail furling is almost never used while racing because it results in a less efficient sail profile.
The classical slab-reefing method is the most widely used. Mainsail furling has an additional disadvantage in that its complicated gear may somewhat increase weight aloft. However, as the size of the boat increases, the benefits of mainsail roller furling increase dramatically. An old saying goes, “Once you’ve realized it’s time to reef, it’s too late.” A similar one says, 'The time to reef is when you first think about it.' Hull trim [ ]. This section needs additional citations for.
Unsourced material may be challenged and removed. (June 2017) () Hull trim is the adjustment of a boat's loading so as to change its fore-and-aft attitude in the water. In small boats, it is done by positioning the crew. In larger boats, the weight of a person has less effect on the hull trim, but it can be adjusted by shifting gear, fuel, water, or supplies. Different hull trim efforts are required for different kinds of boats and different conditions.
Here are just a few examples: In a lightweight racing dinghy like a, the hull should be kept level, on its designed water line for best performance in all conditions. In many small boats, weight too far aft can cause drag by submerging the, especially in light to moderate winds. Weight too far forward can cause the bow to dig into the waves. In heavy winds, a boat with its bow too low may capsize by pitching forward over its bow (pitch-pole) or dive under the waves (submarine). On a run in heavy winds, the forces on the sails tend to drive a boat's bow down, so the crew weight is moved far aft. Heeling [ ] When a ship or boat leans over to one side, from the action of waves or from the centrifugal force of a turn or under wind pressure or from the amount of exposed topsides, it is said to 'heel'.
A sailing boat that is and therefore heeling excessively, may sail less efficiently. This is caused by factors such as wind gusts, crew ability, the point of sail, or hull size & design. Boats heeling in front of in a round- race 1998 When a vessel is subject to a heeling force (such as wind pressure), vessel buoyancy & beam of the hull will counteract the heeling force.
A weighted keel provides additional means to right the boat. In some high-performance racing yachts, water ballast or the angle of a can be changed to provide additional righting force to counteract heeling. The crew may move their personal weight to the high (upwind) side of the boat, this is called, which also changes the centre of gravity & produces a righting lever to reduce the degree of heeling.
Incidental benefits include faster vessel speed caused by more efficient action of the hull & sails. Other options to reduce heeling include reducing exposed sail area & efficiency of the sail setting & a variant of hiking called '. This can only be done if the vessel is designed for this, as in. A sailor can (usually involuntarily) try turning upwind in gusts (it is known as ). This can lead to difficulties in controlling the vessel if over-canvassed.
Wind can be spilled from the sails by 'sheeting out', or loosening them. The number of sails, their size and shape can be altered.
Raising the dinghy centreboard can reduce heeling by allowing more. The increasingly asymmetric underwater shape of the hull matching the increasing angle of heel may generate an increasing directional turning force into the wind.
The sails' centre of effort will also increase this turning effect or force on the vessel's motion due to increasing lever effect with increased heeling which shows itself as increased human effort required to steer a straight course. Increased heeling reduces exposed sail area relative to the wind direction, so leading to an equilibrium state.
As more heeling force causes more heel, may be experienced. This condition has a braking effect on the vessel but has the safety effect in that an excessively hard pressed boat will try and turn into the wind, therefore, reducing the forces on the sail. Small amounts (≤5 degrees) of weather helm are generally considered desirable because of the consequent aerofoil lift effect from the rudder.
This aerofoil lift produces helpful motion to windward & the corollary of the reason why is dangerous. Lee helm, the opposite of weather helm, is generally considered to be dangerous because the vessel turns away from the wind when the helm is released, thus increasing forces on the sail at a time when the helmsperson is not in control. Effects of hull form and underwater foils [ ].
Sailing boats with one hull are 'monohulls', those with two are ', those with three are '. A boat is turned by a, which itself is controlled by a or a wheel, while at the same time adjusting the sheeting angle of the sails. Smaller sailing boats often have a stabilizing, raisable, underwater fin called a centreboard, daggerboard, or leeboard; larger sailing boats have a fixed (or sometimes canting). As a general rule, the former are called dinghies, the latter keelboats. However, up until the adoption of the, any vessel racing under sail was considered a yacht, be it a multi-masted ship-rigged vessel (such as a sailing frigate), a sailboard (more commonly referred to as a ) or remote-controlled boat, or anything in between. (See.) Multihulls use flotation and/or weight positioned away from the centre line of the sailboat to counter the force of the wind. This is in contrast to heavy ballast that can account for up to 90% (in extreme cases like boats) of the weight of a monohull sailboat.
In the case of a standard, there are two similarly-sized and -shaped slender hulls connected by beams, which are sometimes overlaid by a deck superstructure. Another catamaran variation is the. In the case of trimarans, which have an unballasted centre hull similar to a monohull, two smaller are situated parallel to the centre hull to resist the sideways force of the wind. The advantage of multihulled sailboats is that they do not suffer the performance penalty of having to carry heavy ballast, and their relatively lesser draft reduces the amount of drag, caused by friction and inertia when moving through the water. One of the most common hulls in the world is the hull.
It was designed by Bruce Kirby in 1969 and unveiled at the New York boat show (1971). It was designed with speed and simplicity in mind. The Laser is 13 feet 10.5 inches long and a 12.5 foot water line and 76 square feet (7.1 m 2) of sail. Effects of sail types and plans [ ]. Further information: A traditional modern yacht is technically called a ' (sometimes a 'Bermudan sloop'). A sloop is any boat that has a single mast and usually a single headsail (generally a jib) in addition to the mainsail ( but c.f. A also has a single mast, set further aft than a sloop and more than one headsail.
Additionally, Bermuda sloops only have a single sail behind the mast. Other types of sloops are gaff-rigged sloops and sloops. Gaff-rigged sloops have quadrilateral mainsails with a (a small boom) at their upper edge (the 'head' of the sail). Gaff-rigged vessels may also have another sail, called a topsail, above the gaff. Lateen sloops have triangular sails with the upper edge attached to a gaff, and the lower edge attached to the boom, and the boom and gaff are attached to each other via some type of hinge. It is also possible for a sloop to be square rigged (having large square sails like a -era ). Note that a ', in the naval sense, may well have more than one mast, and is not properly a sloop by the modern meaning.
If a boat has two masts, it may be a, a, or a, if it is rigged fore-and-aft on all masts. A schooner may have any number of masts provided the second from the front is the tallest (called the 'main mast'). In both a ketch and a yawl, the foremost mast is tallest, and thus the main mast, while the rear mast is shorter, and called the mizzen mast. The difference between a ketch and a yawl is that in a ketch, the mizzen mast is forward of the rudderpost (the axis of rotation for the rudder), while a yawl has its mizzen mast behind the rudderpost. In modern parlance, a is a vessel whose forward mast is rigged with square sails, while her after mast is rigged fore-and-aft.
A is a vessel with two masts both rigged square. As one gets into three or more masts the number of combinations rises and one gets,, and.
A is a large, full sail that is only used when sailing off wind either reaching or downwind, to catch the maximum amount of wind. Rigid foils [ ] With modern technology, 'wings', that is, may be used in place of fabric sails. An example of this would be the and the yacht that won the. Such rigid sails are typically made of thin plastic fabric held stretched over a frame.
See also which competed in the. Alternative wind-powered vessels [ ] Some non-traditional rigs capture energy from the wind in a different fashion and are capable of feats that traditional rigs are not, such as sailing directly into the wind. One such example is the boat, also called the boat, which uses a large windmill to extract energy from the wind, and a to convert this energy to forward motion of the hull. A similar design, called the boat, uses a wind turbine without the propellor, and functions in a manner similar to a normal sail. A more recent (2010) development is a cart that uses wheels linked to a propeller to. Kites and pivoting spars [ ] Some sailing craft are propelled by kites, as with, which uses a tethered airfoil. Others use an airfoil on a pivoting spar, as with.
Windows 7 Serial Key Finder. Both forms of sailing may employ the airfoil in a manner that provides an upward force, as well as a propulsive one, when the sailor controls the airfoil atop a planing board with a skeg. Sailing terminology [ ]. Sailboat on a mooring ball near Youngstown, NY, USA In most cases, rope is the term used only for raw material. Once a section of rope is designated for a particular purpose on a vessel, it generally is called a line, as in outhaul line or dock line.
A very thick line is considered a cable. Lines that are attached to sails to control their shapes are called sheets, as in mainsheet. If a rope is made of wire, it maintains its rope name as in 'wire rope' halyard. Lines (generally steel cables) that support masts are stationary and are collectively known as a vessel's, and individually as shrouds or stays.
The stay running forward from a mast to the bow is called the forestay or headstay. Stays running aft are backstays or after stays. Moveable lines that control sails or other equipment are known collectively as a vessel's. Lines that raise sails are called while those that strike them are called downhauls. Lines that adjust (trim) the sails are called.
These are often referred to using the name of the sail they control (such as main sheet, or jib sheet). Sail trim may also be controlled with smaller lines attached to the forward section of a boom such as a cunningham; a line used to hold the boom down is called a vang, or a kicker in the United Kingdom. A is used to hold a boom up in the absence of sail tension. Are used to control the ends of other such as. Lines used to tie a boat up when alongside are called docklines, docking cables or mooring warps. In dinghies, the single line from the bow is referred to as the. A rode is what attaches an anchored boat to its.
It may be made of chain, rope, or a combination of the two. Some lines are referred to as ropes: • a bell rope (to ring the bell), • a (attached to the edge of a sail for extra strength), • a foot rope (for sailors on to stand on while reefing or furling the sails), and • a tiller rope (to temporarily hold the tiller and keep the boat on course). Other terms [ ] Walls are called or ceilings, while the surfaces referred to as ceilings on land are called overheads or deckheads.
Floors are called soles. The toilet is traditionally called the head, the kitchen is the. When lines are tied off, this may be referred to as made fast or belayed. Sails in different sail plans have unchanging names, however. For the naming of sails, see.
Knots and line handling [ ]. See also: The tying and untying of knots and hitches, as well as the general handling of ropes and lines, are fundamental to the art of sailing. The basic 'Start Yachting' syllabus lists the following knots and hitches: • – stopper knot • – secure the end of a rope to a fixed object • – used to form a fixed loop at the end of a rope It also lists securing a line around a and the use of winches and jamming cleats. The RYA syllabus adds the following to the list above, as well as knowledge of the correct use of each: • – securing lines running along a series of posts • – rigging a stopper to relax the tension on a sheet • – joining two ends of a single line to bind around an object • single and double – joining two ropes of different diameters In addition, it requires competent crewmembers to understand 'taking a turn' around a cleat and to be able to make cleated lines secure. Lines and halyards need to be coiled neatly for stowage and reuse. Dock lines need to be thrown and handled safely and correctly when coming alongside, up to a buoy, and when anchoring, as well as when casting off and getting under way. Rules and regulations [ ] Every vessel in coastal and offshore waters is subject to the (the COLREGS).
On inland waterways and lakes other similar regulations, such as in Europe, may apply. In some sailing events, such as the, which are held on closed courses where no other boating is allowed, specific racing rules such as the (RRS) may apply. Often, in club racing, specific club racing rules, perhaps based on RRS, may be superimposed onto the more general regulations such as COLREGS or CEVNI. In general, regardless of the activity, every sailor must • Maintain a proper lookout at all times • Adjust speed to suit the conditions • Know whether to 'stand on' or 'give way' in any close-quarters situation. The stand-on vessel must hold a steady course and speed but be prepared to take late avoiding action to prevent an actual collision if the other vessel does not do so in time. The give-way vessel must take early, positive and obvious avoiding action, without crossing ahead of the other vessel. () • If an approaching vessel remains on a steady bearing, and the range is decreasing, then a collision is likely.
() This can be checked with a hand-bearing compass. • The sailing vessel on port tack gives way to the sailing vessel on starboard tack () • If both sailing vessels are on the same tack, the windward boat gives way to the leeward one () • If a vessel on port tack is unable to determine the tack of the other boat, she should be prepared to give way () • An overtaking vessel must keep clear of the vessel being overtaken () • Sailing vessels must give way to vessels engaged in fishing, those not under command, those restricted in their ability to manoeuvre and should avoid impeding the safe passage of a vessel constrained by her draft.
() The COLREGS go on to describe the lights to be shown by vessels under way at night or in restricted visibility. Specifically, for sailing boats, red and green sidelights and a white sternlight are required, although for vessels under 7 metres (23.0 ft) in length, these may be substituted by a torch or white all-round lantern. () Sailors are required to be aware not only of the requirements for their own boat, but of all the other lights, shapes and flags that may be shown by other vessels, such as those fishing, towing, dredging, diving etc., as well as sound signals that may be made in restricted visibility and at close quarters, so that they can make decisions under the COLREGS in good time, should the need arise. () In addition to the COLREGS, CEVNI and/or any specific racing rules that apply to a sailing boat, there are also • The IALA standards for, lights, signals, and buoyage and rules designed to support safe navigation. • The SOLAS () regulations, specifically Chapter V, which became mandatory for all leisure craft users of the sea from 1 July 2002.
These regulations place the obligations for safety on the owners and operators of any boat including sailboats. They specify the safety equipment needed, the emergency procedures to be used appropriate to the boat's size and its sailing range, and requirements for passage planning with regard to weather and safety. Licensing [ ] Licensing regulations vary widely across the world. While boating on international waters does not require any license, a license may be required to operate a vessel on coastal waters or inland waters. Some jurisdictions require a license when a certain size is exceeded (e.g., a length of 20 meters), others only require licenses to pilot passenger ships, ferries or tugboats. For example, the issues the, which is required to operate pleasure craft in most inland waterways within the union.
The, in contrast, has no licensing, but instead has voluntary certification organizations such as the. These US certificates are often required to charter a boat, but are not required by any federal or state law. Competition [ ]. Sailing team at the sailing competition at on, in December 2003 generally fits into one of two categories: Introduction [ ] Sailing is a diverse sport with many pinnacles from the to many to development based campaigns for the to round the world races such as the and. Sailboat racing ranges from single person to large boats with 10 or more crew and from small boats costing a few thousand dollars to multimillion-dollar campaigns. The costs of participating in the high-end large boat competitions make this type of sailing one of the most expensive sports in the world. However, there are inexpensive ways to get involved in sailboat racing, such as at community sailing clubs, classes offered by local recreation organizations and in some inexpensive dinghy and small classes.
Under these conditions, sailboat racing can be comparable to or less expensive than sports such as golf and skiing. Sailboat racing is one of the few sports in which people of all ages and genders can regularly compete with and against each other. The sport of is governed by the with most racing formats using the. Competition Criteria [ ] Sailing regattas contain events which are defined by a combination of discipline, equipment, gender and sailor categories.
Equipment Common categories of equipment include the following,,, and. Disciplines The following are the main disciplines: • Fleet Racing – The commonest form of competitive sailing involving boats racing around a course. • Match Racing – Two identical boats race against each other. This is one-on-one duel requires strategy and tactics.
The first to cross the finish line wins. • Team Racing – Two teams each of normally three boats compete against each other. Fast-paced racing depends on excellent boat handling skills and rapid tactical decision making. • Speed Sailing – Is managed by • Wave Riding • Both windsurfing and kiteboarding are experimenting with new formats. Gender The majority of sailing events are 'open' events in which males and females compete together on equal terms either as individuals or part of a team.
Sailing has had female only World Championships since the 1970s to encourage participation and now host more than 30 such World Championship titles each year. While many mixed gender crews have competed in open events compulsory mixed gender are now included as events in both Olympic (Nacra 17) and Paralympic (SKUD 18). Sailor Categories In addition, the following categories are sometimes applied to events: • Age • Nationality • Disabled Classification • Professional Sailor Classification Regatta [ ] Most sailboat and is done in coastal or inland waters. However, in terms of endurance and risk to life, ocean races such as the, the solo, and the non-stop solo, rate as some of the most extreme and dangerous sporting events. Not only do participants compete for days with little rest, but an unexpected storm, a single equipment failure, or collision with an ice floe could result in the sailboat being disabled or sunk hundreds or thousands of miles from. Equipment [ ] Handicap Where boats of different types sail against each other and are scored based on their handicaps which are calculated either before the start or after the finish.
Most small boat racing is class racing or handicap racing under. However most yacht racing is done under handicap the two international recognised systems are, ORC Club and ORCi which are used for pinnacle events ( e.g.,,,, etc.) Other empirical handicap systems are also popular for example is very common in the U.S.A. Class Where all the boats are substantially similar, and the first boat to finish wins.
Class racing can be further subdivided into measurement controlled and manufacturer controlled classes. Manufacturer controlled classes strictly control the production and source of equipment.
(e.g.,,,,, etc.) However, it is measurement controlled classes that offer the diversity in equipment. Some classes use measurement control to tightly control the boats as much as manufacturer class (e.g.,,, etc.) At the other end of the extreme are the development classes which freely allow development within a defined framework.
These are most commonly either formula based like the metre class or a box-rule that defines key criteria like maximum length, minimum weight, and maximum sail area. (e.g., the,, and. Recreational sailing [ ]. This section needs additional citations for.
Unsourced material may be challenged and removed. (June 2017) () Sailing for pleasure can involve short trips across a bay,, coastal cruising, and more extended offshore or 'blue-water'. These trips can be or the vessel may be crewed by families or groups of friends. Sailing vessels may proceed on their own, or be part of a with other like-minded voyagers. Sailing boats may be operated by their owners, who often also gain pleasure from maintaining and modifying their craft to suit their needs and taste, or may be rented for the specific trip or cruise.
A professional and even crew may be hired along with the boat in some cases. People take cruises in which they and 'learn the ropes' aboard craft such as, classic sailing vessels and restored working boats. Cruising trips of several days or longer can involve a deep immersion in,,, local and, fishing lore, sailing knowledge, general psychological coping, and serendipity.
Once the boat is acquired it is not all that expensive an endeavor, often much less expensive than a normal vacation on land. It naturally develops self-reliance, responsibility, economy, and many other useful skills. Besides improving sailing skills, all the other normal needs of everyday living must also be addressed. There are work roles that can be done by everyone in the family to help contribute to an enjoyable outdoor adventure for all. A style of casual coastal cruising called is a popular summertime family recreational activity.
It consists of taking a series of day sails to out of the way places and overnight while enjoying such activities as exploring isolated islands,,, etc. Many nearby local waters on rivers, bays, sounds, and coastlines can become great natural cruising grounds for this type of recreational sailing. Casual sailing trips with friends and family can become lifetime bonding experiences. Passagemaking [ ]. This section needs additional citations for.
Unsourced material may be challenged and removed. (June 2017) () Long-distance voyaging, such as that across oceans and between far-flung ports, can be considered the near-absolute province of the cruising sailboat.
Most modern yachts of 25–55 feet long, propelled solely by mechanical powerplants, cannot carry the fuel sufficient for a point-to-point voyage of even 250–500 miles without needing to resupply; but a well-prepared sail-powered yacht of similar length is theoretically capable of sailing anywhere its crew is willing to guide it. Even considering that the cost benefits are offset by a much-reduced cruising speed, many people traveling distances in small boats come to appreciate the more leisurely pace and increased time spent on the water.
Since the solo circumnavigation of in the 1890s, long-distance cruising under sail has inspired thousands of otherwise normal people to explore distant seas and horizons. The important voyages of,, Don Street and others have shown that, while not strictly racing, ocean voyaging carries with it an inherent sense of competition, especially that between man and the elements. Such a challenging enterprise requires keen knowledge of sailing in general as well as maintenance, navigation (especially ), and often even international diplomacy (for which an entire set of protocols should be learned and practiced).
But one of the great benefits of sailboat ownership is that one may at least imagine the type of adventure that the average affordable powerboat could never accomplish. See also [ ]. • Carter, Robert (March 2006).. • O'Connor, Tom (September–October 2004).
'Polynesians in the Southern Ocean: Occupation of the Aukland in Islands in Prehistory'. New Zealand Geographic. 69 (6-8). access-date= requires url= () • 'Transportation and Maps' in, the art of the boat is an online exhibition of Canadian historical art at Library and Archives Canada • Jett, Stephen C. University of Alabama Press. • ^ Jobson, Gary (1990). Championship Tactics: How Anyone Can Sail Faster, Smarter, and Win Races. New York: St.
Martin's Press. • ^ Kimball, John (2009). Physics of Sailing. • (1967), An Introduction to Fluid Dynamics, Cambridge University Press, pp. 14–15, • Klaus Weltner A comparison of explanations of the aerodynamic lifting force Am.
55(1), January 1987 pg 52 • Clancy, L.J. (1975), Aerodynamics, London: Pitman Publishing Limited, p. 638, • Collie, S. J.; Jackson, P. S.; Jackson, M.; Gerritsen; Fallow, J.B. (2006), (PDF), The University of Auckland, retrieved 2015-04-04 • Textor, Ken (1995).. Sheridan House, Inc.
L.; Sheppard, P. (December 1956), 'Wind Profiles over the Sea and the Drag at the Sea Surface', Australian Journal of Physics, 9: 511,:,: • Hsu, S. (January 2006). Louisiana State University. Archived from (PDF) on 2016-03-04.
Retrieved 2015-03-19. • Zasso, A.; Fossati, F.; Viola, I. (2005), (PDF), 4th European and African Conference on Wind Engineering, Prague, pp. 350–351 • Hsu, S. (April 2008).. Mariners Weather Log. National Oceanic and Atmospheric Administration. Retrieved 2015-03-19.
• Cunliffe, Tom (2016). Bloomsbury Publishing. • Marchaj, C.
(2002), Sail Performance: Techniques to Maximize Sail Power (2 ed.), International Marine/Ragged Mountain Press, p. 416, • Bethwaite, Frank (2007). High Performance Sailing.
Adlard Coles Nautical.. • ^ Howard, Jim; Doane, Charles J. • Yochanan Kushnir (2000).. Retrieved 13 March 2012. Donald; Henson, Robert. Meteorology Today (11 ed.).
Cengage Learning. • Royce, Patrick M. ProStar Publications. • National Ocean Service (March 25, 2008).. National Oceanic and Atmospheric Administration. Retrieved 2017-06-13.
• ^ Cunliffe, Tom (January 1988).. Cruising World. 14 (1): 58–64..
Retrieved 2017-06-16. North Central Puget Sound Geographic Response Plan. Washington Department of Ecology.
December 2012. Retrieved March 23, 2016. • ^ Findlay, Gordon D.
• Cunliffe, Tom (2016). Bloomsbury Publishing. • ^ Jobson, Gary (2008).
(Revised ed.). Simon and Schuster. • Walker, Stuart H.; Price, Thomas C. Norton & Company.
• Fossati, Fabio (November 1, 2009). Aero-hydrodynamics and the Performance of Sailing Yachts: The Science Behind Sailing Yachts and Their Design. Adlard Coles Nautical. The Price of Admiralty. New York: Viking.
• Campbell, I.C. (1995), (PDF), Journal of World History, 6 (1), pp. 1–23 • Skeat, Walter W. Dover language guides (Reprint ed.).
Courier Corporation. • ^ Biddlecombe, George (1990)..
Dover Maritime Series. Courier Corporation. • ^ Hart, Peter (2014).. • ^ Gratwick, Andy (2015).. Bloomsbury Publishing. • ^ Bethwaite, Frank (2007)..
Retrieved October 6, 2016. Archived from on 2010-03-14. Retrieved 2010-06-30. Retrieved 2010-06-30. • • Cort, Adam (April 5, 2010).. Retrieved April 6, 2010.
Retrieved April 6, 2010. • Rousmaniere, John (June 1998). Retrieved 9 January 2014.
• Tom Lochhass.. The New York Times Company. Retrieved 9 July 2012. • Jinks, Simon (2007). RYA Sail Cruising and Yachtmaster Scheme: Syllabus and logbook. Eastleigh, Hampshire: Royal yachting Association. • Competent Crew: Practical Course Notes.
Eastleigh, Hampshire: Royal Yachting Association. • Pearson, Malcolm (2007). Reeds Skipper's Handbook. • Sails set for a breeze coming from the left hand side of the boat • Sails set for a breeze coming from the right side of the boat • Pearson, Malcolm (2007). Reeds Skipper's Handbook.
Adlard Coles Nautical. (14 May 2012).. Bibliography [ ] • 'Transportation and Maps' in, an online exhibition of Canadian historical art at Library and Archives Canada • Rousmaniere, John, The Annapolis Book of Seamanship, Simon & Schuster, 1999 • Chapman Book of Piloting (various contributors), Hearst Corporation, 1999 • Herreshoff, Halsey (consulting editor), The Sailor’s Handbook, Little Brown and Company, 1983 • Seidman, David, The Complete Sailor, International Marine, 1995 • Jobson, Gary (2008). Sailing Fundamentals (Revised ed.). Simon and Schuster. Further reading [ ] • (June 1998).
The Illustrated Dictionary of Boating Terms: 2000 Essential Terms for Sailors and Powerboaters (Paperback).. External links [ ] Wikimedia Commons has media related to. Look up in Wiktionary, the free dictionary. • • • at Curlie (based on ) • (School of Physics, University of New South Wales, Sydney, Australia) • travel guide from Wikivoyage. • • • ('One-twenty-five') • • 13ft skiff • • • • • 405 ('Four-oh-five') • • Access Liberty • • • • • • • • • • • • Bonito • • • • • • • Cherokee • • • • • • • Daring • • • Escape • • • Extra • • • • • • • • • • • • • IDRA14 • International Twelve • • • • • • • • • • • • Laser Funboat • • • • • • • • • • • • • • • • • • • • • • • • RS Q'Ba • • • • • • • • • • • • • • • • • • • • • • Tinker Star Traveller • Tinker Traveller • • • Topper Topaz • • • • Twinkles 10 & 12 • • • • • • • • Dinghies under 20 ft.
>Tips Welcome to HERON TIPS 1/ 6 /2015 Finally we have some tips for you to improve your sailing and boats. 'Flat is fast: ' This section will be broken up into two parts skills and construction tips. To start off you will notice that most of the tips are just links to other sites. SKILLS TIPS What I have done is surf the web to find some great sites. Most of the sites are managed by other classes but the same rules apply to the heron: Page Made by the NSW heron association to further extent the heron handbook Page made by a scout group and it has animated pictures on how to tie knots Site that gives you some useful tips on how to sail. The tips are for other types of boats but you can apply them to heron racing.
This guy is a great sailor and writes articles in Australian Sailing all the time he also sells training books which would be good to get. The tips on the page are for much bigger boats but it is all about tell tails and the same theory applies to smaller boats like the heron (and they cost a lot less) wow this one is great, if you are a learner you'll find this stuff overwhelming but it is an interesting read. Some information on how to prepare you mind Goal setting. Is at the same site as the one above but gives you some idea on how to improve your speed this is made by the uk dinghy association. I haven't read the site but it is like the guy has put a book on the web and it touches quite a few subjects. CONSTRUCTION TIPS: This is an old article which tells you how to fit side tanks in.
When it was written you could only have a half height front tank, now that is changed. If you have an old boat and you want to put in side tanks just leave the front tank there it makes the whole process so much easier. The reason why people prefer side tanks is that it get less water in it and keeps the water more towards the middle of the boat as apposed to front and back buoyancy boats after a capsize. Some might say that all you have to do you is stop capsizing and the problem is solved, well you could do that. >Tips email and comments: © 2003 SA Heron Sailing Association.